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Abstract 

Quantile maximum likelihood (QML) is an estimation technique proposed by 

Heathcote, Brown and Mewhort (2002), which provides robust and efficient estimates 

of distribution parameters, typically for response time data, in sample sizes as small as 

40 observations.  In view of the computational difficulty inherent in implementing 

QML, we provide open-source Fortran 90 code that calculates QML estimates for 

parameters of the ex-Gaussian distribution, as well as standard maximum likelihood 

estimates.  We show that parameter estimates from QML are asymptotically unbiased 

and normally distributed.  Our software provides asymptotically correct standard error 

and parameter inter-correlation estimates, as well as producing the outputs required 

for constructing quantile-quantile plots.  The code is parallelisable and can easily be 

modified to estimate parameters from other distributions.  Compiled binaries, as well 

as the source code, example analysis files, and a detailed manual are available for free 

on the Internet. 
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Fitting parametric distribution models to empirical response time (RT) data 

has an importance that is increasingly recognised in quantitative psychology (e.g., 

Andrews & Heathcote, 2001; Balota & Spieler, 1999; Heathcote, Popiel & Mewhort, 

1991; Luce, 1986; Mewhort, Braun & Heathcote, 1992; Ratcliff, 1978; Ratcliff & 

Murdock, 1976; Smith, 1995; Smith & Mewhort, 1998; Spieler, Balota & Faust, 

1996; Van Zandt, Colonious & Proctor, 2000; Wixted & Roher, 1993).  Recently 

interest in psychology has focussed not only on which parametric models should be 

used, but also on precisely how their parameters should be estimated from data (e.g. 

Cousineau & Larochelle, 1997; Heathcote, 1996; Van Zandt, 2000). 

Estimating distributional parameters from empirical data is a difficult task, 

given the conditions that usually prevail in psychological measurement: high noise 

and small sample sizes. Various estimation methods have been proposed, most of 

which fall into two classes: either least-squares estimation based on sample statistics 

(e.g., quantiles, vincentiles or cumulative densities); or maximum likelihood 

estimation.  Van Zandt (2000) evaluated and compared most current estimation 

techniques and concluded that the standard maximum likelihood estimator 

(continuous maximum likelihood: CML) performed best.  In addition, CML performs 

adequately on sample sizes as small as 100 observations, which is important for 

psychological applications (Ratcliff, 1979). 

Recently, Heathcote, Brown and Mewhort (2002) proposed a new variant of 

maximum likelihood estimation: quantile maximum likelihood (QML).  Heathcote et 

al. evaluated the performance of QML estimation for data generated from ex-

Gaussian distributions, in realistically small sample sizes.  QML proved to be far 

superior even to CML estimation; QML parameter estimates were typically a little 

less biased and very much less variable than CML parameter estimates.  Because of 
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its improved efficiency, QML produced good parameter estimates in sample sizes as 

small as 40.  This represents very useful advance in methodology, given that RT 

sample sizes are often limited to well below 100 points because of factors such as the 

number of available experimental stimuli.  QML is also relatively robust to the 

presence of outliers, whereas CML estimates are sensitive, and in some cases are 

completely dominated by outliers. The robustness of QML makes it particularly 

attractive for use in psychological research.  Note that these advantages of QML over 

CML cannot be expected to hold for all distributions and all sample sizes (e.g., the 

standard theorems tell us that these differences must either reverse or disappear given 

infinitely large sample sizes), however, preliminary simulation work suggests that 

QML’s advantages extend to some other distributions commonly used to model RT 

data. 

The QML estimation technique of Heathcote et al. (2002) suffers from two 

computational disadvantages: it is more complicated to implement, and in most cases 

has a higher computational cost, than CML.  To reduce these problems, and to take 

the burdens of calculating gradients and Hessians for the likelihood objective function 

from the end user, we present an open source code Fortran 90 program for fitting the 

ex-Gaussian distribution by QML and CML methods.  Although our program uses 

QML solely for the estimation of the ex-Gaussian distribution, there is no reason to 

limit this new technique to the ex-Gaussian.  As such, we have developed the source 

code so that end users can easily alter it to implement QML estimation for other 

distributions. 

Our program (QMLE, Quantile Maximum Likelihood Estimator) calculates 

maximum likelihood estimates of the parameters of the ex-Gaussian distribution from 

sets of observed data.  Parameter estimates from the QML method are asymptotically 
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(in the sense of increasing sample size) unbiased and normally distributed, like those 

of standard maximum-likelihood.  The QMLE program provides estimates of the 

standard errors and inter-correlations of the parameter estimates, based on the 

observed Fisher information matrix.  These estimates are asymptotically accurate, as 

shown in Appendix A.   

In finite samples, we checked the agreement of the variance-covariance 

matrices provided by QMLE against values calculated by Monte-Carlo simulation 

(with 500 repetitions for each sample size and parameter set).  Using parameter 

settings identified by Heathcote et al. (2002) as “typical”, we found that the mean 

standard deviations of the parameter estimates extracted from the variance-covariance 

matrices provided by QMLE agreed with the true values to within 4.5% for samples 

of size N=1000.  Indeed, the asymptotic estimates were fairly accurate even in quite 

small samples:  standard deviations of parameter estimates different from the true 

values by less than 7.5% for samples of size N=200, and less than 13.2% for samples 

as small as N=50.  Parameter inter-correlations extracted from the estimated variance-

covariance matrices were likewise quite accurate in finite samples (agreement to 

within 5.3% for N=1000, 8.2% for N=200 and 26% for N=50). For further evaluation 

of the fits, QMLE returns observed and expected quantiles so that Q-Q plots 

(Cleveland, 1985) can be easily constructed.   

QMLE was designed to run in a batch-processing mode, analysing many 

different data sets contained in a single input file, and requiring no user input after 

initiation.  For greater flexibility, we have also included an interactive mode, in which 

the user can manually alter the parameters that affect the estimation procedure, such 

as the start point, convergence criteria, and parameters for the calculation of quantiles. 
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CML vs. QML Estimation for the ex-Gaussian 

For a full discussion of the details and merits of QML estimation, see 

Heathcote et al. (2002).  We provide here only a brief comparison of this method with 

standard CML estimation.  All maximum likelihood estimates are obtained by 

maximising the likelihood of observed data over different theoretical parameter 

values.  The likelihood function that is maximised depends on the statistical model 

assumed for the data.  CML estimation of the ex-Gaussian assumes that the data are 

independent, identically distributed (i.i.d.) ex-Gaussian observations.  Equation 1 

gives the likelihood for the data under this model. 
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Here, we have assumed that the observations are {xi: i=1…N} and that the ex-

Gaussian probability density function (pdf) is expressed as Equation 2.  Note that the 

likelihood is defined up to proportionality only, not up to equality, in accordance with 

Fisher’s definition. 
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QML estimation works by assuming a weaker model for the data, one that 

nests the model assumed by CML.  This nesting ensures that QML estimation is 

always appropriate when CML estimation is appropriate, and also allows QML 

estimation to work properly in the presence of conditions that would violate the 

assumptions of CML estimation.  QML estimation begins with the specification of a 

fixed set of probabilities, {pi: i=0…m}, where p1=0, pi< pi+1 and pm=1, such that 

p(t < qi) = pi, where the set {qi: i=0…m} are quantiles. QML estimation assumes that 

the statistical model for the data is such that the frequency of observations in the inter-
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quantile ranges is equal to that which would be observed if the data were i.i.d. ex-

Gaussian.  This model leads to the likelihood function1 given as Equation 3. 
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In practice, the quantiles are estimated from the observed data, and the {ni: i=1…m} 

are integers, such that ni represents the number of observations in the interval [qi-1, qi). 

Equation 3 reveals why QML is significantly more costly than CML to 

implement for the ex-Gaussian pdf: the evaluation of the QML likelihood function 

requires many integrations of the ex-Gaussian pdf.  This disadvantage will apply 

equally to any other pdf that is used, as long as an efficient analytic form for the 

cumulative density function (cdf) is not available.  If the cdf does have a simple form, 

then the integrals in Equation 3 can be replaced by differences of cdf values, and the 

numerical burden of QML estimation is reduced to approximately that of CML. 

Equation 3 is not a fully specified likelihood function, if the {pi} are fixed and 

the {qi} are estimated from finite-sample data2.  This is because the {qi} are subject to 

sampling error and a fully specified likelihood function must integrate Equation 3 

over their joint sampling distribution.  In fact, the joint sampling distribution of the 

{qi} follows the inverse of the incomplete beta function (see, e.g., Gilchrist, 2000, 

pp.84-86) and a fully-specified maximum likelihood approach would integrate across 

that distribution.  The QML algorithm works in an approximate sense (and exactly in 

infinitely large samples) by replacing integration over this sampling distribution with 

a single representative value – the sample quantile.  This approximation allows QML 

to work well compared with other methods, especially in small samples, as 

demonstrated by Heathcote et al. (2002).  That QML is not a fully-specified 

likelihood approach may trouble some readers since the classic theorems of maximum 
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likelihood estimation do not apply.  However, the results established in Appendix A 

provide alternatives to the most basic theorems and allow QML users to be confident 

of its basic asymptotic properties. 

The QMLE Program 

The source code for the QMLE program can be obtained by following the 

links from http://www.newcastle.edu.au/school/behav-sci/ncl/ to the Software 

Repository page.  In addition to the source code, we provide pre-compiled binaries for 

use with Windows, and both parallel and serial 64-bit binaries for Solaris platforms.  

The web site also contains a technical manual, which should be read before using 

QMLE.  This manual provides detailed instructions for use, as well as covering the 

technical considerations we encountered in producing QMLE. 

In writing QMLE, we have used only standard ANSI Fortran 90 code for 

portability, hence the source code we provide should compile without modification on 

any platform with an ANSI-compliant compiler.  The limitations of standard Fortran 

mean that QMLE has a quite primitive user interface. However, we feel that program 

portability and flexibility are more important than the interface.  The only non-

standard program lines are some OpenMP compiler directives embedded in the 

slowest loops (OpenMP Architecture Review Board, 2000).  Any non-compliant 

compiler will safely ignore these directives, but with an OpenMP compliant compiler 

they will ensure that QMLE makes efficient use of symmetric multi-processor 

hardware. 

QMLE reads its operating parameters from a text file that contains all user-

defined parameters, and also allows for comments.  In interactive fitting mode, the 

parameter file is re-examined and changes implemented between each search 

sequence, while in standard mode it is examined once only.  The parameter file 
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provides a record of the fitting conditions, including input and output file names, 

which can be enhanced by the insertion of comments that are ignored by QMLE.  

Sample parameter and data files are available for download with the program.  Figure 

1 (Panel A, top left) gives an example of the format of the input file. 

_______________________________________________________ 

Insert Figure 1 about here 

_______________________________________________________ 

The data from the specified input file are analysed in a cell-by-cell manner, 

with the data “cells” defined by a user-specified factor column, with the condition that 

data from the same cell form a contiguous block of lines in the data file.  A sample of 

a data file appears in Panel B (top right) of Figure 1: the left hand column is the user 

defined factor column that separates the cells to be analysed, the right hand column 

contains the data.  The (compiled) program can then be called from a command shell, 

and passed the name of any particular parameter control file the user wishes to 

employ.  An example of the syntax used for this (suitable for both UNIX and 

Windows shells) appears in Panel C (bottom) of Figure 1, followed by typical output 

generated by the program in the analysis of 14 cells of data (note that these output 

values, and more, are also written to files).  The number of the cell being analysed 

(i.e., its sequential position in the data file, not necessarily the corresponding factor 

column value) is the first value on an output line, followed by the number of data 

points in that cell (N) and the number of quantile cut points calculated (M).   

The analysis of each cell begins with the computation of those quantile 

estimates, for a user-defined set of quantile probabilities.  Note that the calculation of 

these estimates is corrected for repeated observation values (runs) that often occur due 

to limited-precision measurement.  Our solution to this problem is to re-distribute 
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repeated values evenly across their range of possible true values.  For example, 

suppose a value of 45 units was observed three times, with a measurement precision 

of ±0.5 units. Our algorithm re-distributes these three observations as {44.75, 45, 

45.25} before estimating quantiles.  We recognise that this solution is neither unique 

nor perfect, but believe that it provides a workable resolution of the runs problem for 

experimental data.  After correcting for runs, quantiles are estimated according to 

Hyndman and Fan’s (1996) “Definition #5”.  Other users may prefer other quantile 

estimation algorithms, and so QMLE includes an option to operate on pre-calculated 

quantile estimates rather than raw data. 

Once the quantile estimates are calculated, QMLE identifies a maximum for 

the likelihood function corresponding to either CML or QML, as directed by the user.  

The parameters for this maximum are the next three values on the output line (in the 

order µ, σ then τ).  The start point for the search is generated using heuristics that we 

have found work well, even in small samples. However, we cannot guarantee the 

heuristics will work for all data sets, and so provision is made for user-defined start 

points. The search algorithm makes use of gradient values for the log-likelihood 

function during minimisation.  In Appendix A of the QMLE Technical Manual 

(available from the web site), we provide generic expressions that calculate these 

gradients for both CML and QML given values for the gradient of the underlying pdf.  

If the user wishes to estimate a pdf other than the ex-Gaussian, they need only replace 

the subroutines that provide gradient and pdf values for the ex-Gaussian distribution 

with routines appropriate for the new distribution (for full details, see the Technical 

Manual).  Given such new routines, QMLE will use quadrature to integrate the pdf 

and gradient functions, and will use its own algorithms to calculate the gradient for 

the likelihood function.   
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Search convergence is controlled by two user-defined tolerance values: on the 

objective function value and estimated parameter values. After convergence, QMLE 

evaluates the inverse of the Hessian of the log-likelihood function at the convergence 

point to provide estimates of parameter standard errors (the next three values on the 

output) and inter-correlations (written to file only).  Again, for distributions other than 

the ex-Guassian, the user need only alter the subroutine that provides ex-Gaussian pdf 

Hessian values – QMLE will numerically integrate this function and calculate 

Hessians for the likelihood function from these integrals, as discussed in Appendix A 

to the Technical Manual.  QMLE also calculates expected quantile values for the 

estimated distribution, using a line search.  These values are written to one output file 

(with default extension “.oe”), and parameter estimates, standard errors, parameter 

correlations and an exit code are written to another file (with default extension 

“.par”). The exit code summarises properties of the fitting process (e.g., what type of 

convergence occurred) and parameter estimates (e.g., whether the Hessian was 

singular). 
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Appendix A 

Notation 

Suppose we have data {xi, i=1,..N} that are i.i.d. samples drawn from a 

distribution with cumulative distribution function F(t,θ*), with parameter p-vector θ*.  

Suppose further that we use the methods of QML to estimate the parameter vector 

from these data, resulting in an estimate θ̂ .  QML estimation begins with a fixed 

(user-defined) set of quantile probabilities, {si, i=1..M}, Σsi=1.  For each data set, 

these probabilities are used to estimate a set of quantile boundaries {qi, i=0,..,M}, with 

F(q0,θ)=0 and F(qM,θ)=1 for all θ.  Let {pi, i=0..(M-1)} denote the number of 

observations from the sample that lie in each of the intervals (qi, qi+1), so that Σpi=N.  

For reasonable quantile estimation algorithms, including that used in the QMLE 

software (see Hyndman & Fan, 1996), the quantile estimates converge to the simple 

order statistic estimates with increasing sample size.  That is, if oa is the a-th order 

statistic of the sample, then for sufficiently large N we have that F(qi,θ*)=oa/N, and 

oa/N converges to the sample value ∑
−

=

1

1

i

j
js with increasing sample size. 

Theorem 1 is very similar to the theorems put forth by Fisher (1956, p.148, see 

also Edwards 1972), except that it is trivially altered for QML rather than standard 

ML.  Lemma 1 and 2 are weaker versions of the analogous proofs for standard ML.  

Note, however, that both lemmas and the theorem apply only asymptotically.  For 

standard ML, the equivalent results to Lemmas 1 and 2 apply in finite samples, while 

the final result (analogous to Theorem 1) applies asymptotically only. 
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Lemma 1.  If LQ denotes the QML likelihood function, then asymptotically, 
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for k=1..p, where the integral is over the sample space of 

the data. 

Proof of  Lemma 1.  By the definition of the QML likelihood function: 
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Given that LQ is always greater than zero, it is sufficient to show that the desired 

equality holds for ln(LQ), thus we must show that: 
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Asymptotically, the quantile estimates qi have Dirac (point) distributions given by the 

order statistics, as noted above, thus integration over the sample space becomes 

evaluation at these points only.  Using the linearity of the derivative operator, and the 

chain rule applied to the logarithmic function: 
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By the asymptotic properties of the quantile estimator discussed above, we have that 

F(qi+1,θ*)-F(qi,θ*)=(pi/N) for sufficiently large N, giving: 
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However, the central terms in the sum of Equation A4 cancel, leaving only: 
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Grouping the derivatives: 
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By definition F(qM,θ)=1 and F(q0,θ)=0, for any θ.  Thus, F(qM,θ)-F(q0,θ)=1 for all θ 

and hence all partial derivates of this value with respect to θk, k=1..p are zero, which 

completes the proof of Lemma 1. 

Note that in the proof of Lemma 1, the assumption that the data are i.i.d. 

samples from F can be weakened for QML, but not for standard ML, as long as 

Equation A4 follows from A3 given the weaker model.  This is equivalent to saying 

that the above theorem holds for models weaker than the i.i.d. model employed by 

standard ML, to the extent that the asymptotic distribution of the pi under the weaker 

model is equal to that expected under the standard i.i.d. model. 
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By the definition of LQ, and recalling that asymptotically the integral reduces to 

evaluation at the order statistics versions of the quantiles, the right hand side of 

Equation A7 becomes: 
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The first sum in Expression A8 is zero, by the same arguments as used for the proof 

of Lemma 1.  That is, asymptotically F(qi+1,θ*)-F(qi,θ*)=(pi/N), and the summands 

reduce to the numerator elements.  Cancelling the central terms as before leaves only 

the second derivatives evaluated at qM and q0.  Recall that F(qM,θ)=1 and F(q0,θ)=0 

for any θ, by definition, and hence the second derivatives are zero, giving: 
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The multiplier in Equation A9, LQ(xi,i=1..N|θ*) approaches zero as sample size N 

increases.  To see this, note from the definition of LQ that it is can be expressed as the 

product of N numbers: 

( ) ( )( ) ( )( )( )∏
=

+ −==
N

i
ididiQ qFqFNixL

1

**
1

* ,,|..1, θθθ  

Where the function d:{xi, i=1..N}→{0,1,…,M-1} is defined by xi∈(qd(i)+1,qd(i)).  

Asymptotically, each factor in the product is smaller than { }iMi
ss

..1max max
=

= , and so 

asymptotically the multiplier in Equation A9 is smaller than ( )Nsmax .  As 0<smax<1 by 

definition, this product must thus approach zero as N increases.  Thus, the right hand 

side of Equation A9 is asymptotically zero.  This completes the proof of Lemma 2. 

 

Given the results of Lemma 1 and 2, the standard theorems of ML apply to 

QML, providing for the asymptotic normality of its parameter estimates, as well as 

showing that they are asymptotically unbiased and have an asymptotically exact 
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variance-covariance matrix given by the inverse of the negative Hessian matrix of 

lnLQ.  These arguments are reproduced below, as Theorem 1, but can also be found in 

Fisher (1956). 

 

Theorem 1.  In large samples, under repeated re-sampling of the data, the p-vector 

of parameter estimates, θ̂ , from the methods of QML are normally distributed and 

unbiased, with variance-covariance matrix given by 1
*
−− θH , where *θH  is the Hessian 

matrix for lnLQ, evaluated at θ=θ*. 

Proof of Theorem 1.  We first show that the distribution of the gradient vector for 

lnLQ in large samples is normal, with mean zero and variance-covariance matrix -H.  

Using only the definition of expectation and the chain rule for differentiation, the 

expected value of the j-th element of the gradient vector for lnLQ is given by: 
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But this value is asymptotically zero, by the result of Lemma 1.  We now examine the 

Hessian of lnLQ.  Two applications of the chain rule give: 
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 (A10) 

Lemma 2 implies that the first term on the right hand side of Equation A10 is 

asymptotically zero: 
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Similarly, two further applications of the chain rule provide that: 
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From Equations A11 and A12 we thus have: 

**

lnlnln 2
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The left hand side of Equation A13 is the expectation of the product of elements of 

the gradient vector for lnLQ.  Since the expected value of these elements is uniformly 

zero (from Lemma 1, and above), this term is simply the covariance of the elements 

of the gradient vector.  Further, given that the function lnLQ is the sum of many 

independent random variables, the central limit theorem implies that, asymptotically, 

it will be normally distributed.  Thus, the gradient vector for lnLQ is asymptotically 

normal, with mean zero and variance matrix given by Equation A13. 

Now consider the sampling distribution of the QML parameter estimates, θ̂ , 

under repeated data sampling.  We must make the extra assumption that the surface 

defined by lnLQ for different parameters θ is quadratic near the value of θ*.  The 

assumption of a quadratic log-likelihood surface will be asymptotically accurate.  

Given this assumption, the Hessian for lnLQ is constant, say H, with (i,j)-th element 

Hi,j.  With a perfectly quadratic surface, a single step of a Newton-Raphson 

optimisation will move between the sample parameter estimates, θ̂ , and the true 

value, θ*, according to: 

*lnˆ 1*

θ
θθ QLH ∇⋅−= −  (A14) 

Here, ∇ represents the gradient operator.  From the results above, ∇lnLQ is 

(asymptotically) normally distributed, with mean zero and variance-covariance matrix 

*θ
H− .  From the usual properties of normal variables under linear transformation, it 

immediately follows from Equation A14 that θ̂  is also asymptotically normal, with 

mean θ* and variance matrix 1
*
−−
θ

H .  This concludes the proof of Theorem 1. 
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Figure Captions 

 

Figure 1.  Panel A (top left): example of format of parameter input file.  Panel 

B: (top right): example of format of data input file.  Panel C (bottom centre): 

example of how to call the binary “qmle” from a shell, and pass parameter file 

“mypars” for control, followed by the associated output. 
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Figure 1 

 

 

 

A: Parameter File Fragment 
# Next line is input data file name. 
sample.dat 
# Next line is the output file stem 
output 
1 Measurement unit size. 
1 Fitting Mode: 0=silent, 1=one output line/cell, 2=trace 
# Parameters below here can be changed while fitting is running 
1.e-9   Proportional objective function change tolerance 
1.e-4   Proportional L(inf)-norm parameter tolerance 
150     Maximum iterations allowed in search 
2 Sample stat type (1=raw data, 2=quantile) 
2 Data aggregation level 
 

B: Data File Fragment 
    1     543 
    1     540 
    1     515 
    1     533 
    1     649 
    1     527 
    1     557 
    2     910 
    2     512 
    2     536 
    2     522 

2 481 
... 

C: Example Session (Note: > is a command prompt, [↵] is an “Enter” keystroke) 
> qmle[↵] 
mypars[↵] 
     1    39    31   445.63    56.45    72.17    26.20    19.38    28.44    3 
     2    38    31   447.58    45.11   163.61    18.92    16.75    32.58    3 
     3    40    31   478.15    10.52   122.50     8.20    11.99    21.93    1 
     4    40    31   414.03     0.00   112.74     0.00     0.00     0.00   42 
     5    40    31   434.15    10.03   124.73     6.46     7.66    21.36    3 
     6    40    31   494.33    41.06   106.83    15.39    11.30    23.19    3 
     7    40    31   422.59    26.60    90.50    12.80    11.38    19.72    1 
     8    39    31   483.91    77.11    90.38    59.68    44.72    63.66    3 
     9    38    31   478.49    51.69   120.19    20.76    17.21    28.56    3 
    10    40    31   425.43     9.55   131.29     6.78     9.00    22.52    1 
    11    40    31   469.77    41.61   188.27    18.34    15.74    36.04    2 
    12    38    31   522.63    32.97    84.17    12.45     9.76    18.77    3 
    13    39    31   478.31    75.91    88.43    37.83    27.57    40.11    3 
    14    37    31   502.42    68.02   129.88    29.17    23.99    36.68    1 
End of file reached in input data.  Stopping. 
 
> 
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Footnotes 

1 Equation 3 suggests that QML bears strong similarities to χ² estimation.  In the 

nomenclature usually used with χ², the {ni} are “observed frequencies” (O) and the 

( )∫
−

i

i

q

q

dttexg
1

,,, τσµ  are “expected proportions” (E/N).  QML optimisation takes place 

on a logarithmic transformation of Equation 3, which gives the same objective 

function as used for χ² estimation, except with the usual ( ) EEO 2−  term replaced by 

( )NEO loglog − .  Optimisations over these two functions are not very dissimilar.  In 

fact, Jeffreys (1939, pp.146-148) presents a Taylor approximation argument showing 

that the QML objective function is equal to a modified χ² function (with denominator 

O rather than the usual E) up to a third order error term, and an irrelevant additive 

constant.  The similarity to χ² estimation extends to robustness against measurement 

error: in particular, sample observations can be measured with error without altering 

the QML objective function, as long as the error is not large enough to move the 

quantile bounds. 

2 We are thankful to an anonymous reviewer for pointing this out. 


